

SUCCESSES AND LESSONS LEARNED IN THE SF BAY AREA

SEVEN YEARS OF ADDRESSING TRASH REDUCTION REQUIREMENTS

CHRIS SOMMERS
MANAGING SCIENTIST

CASQA PRECONFERENCE WORKSHOP SEPTEMBER 25, 2017

PRESENTATION OUTLINE

- I. Overview of trash reduction requirements
- II. Bay Area compliance approaches
- III. Top 6 lessons learned
- IV. Resources/tools available

MUNICIPAL REGIONAL (STORMWATER) PERMIT (MRP) PROVISION C.10

- Trash load reduction targets
 - 2014 40%
 - 2016 60%
 - 2017 70%
 - 2019 80%
 - 2022 100% (no adverse impacts)
- Mandatory full capture systems Permittee specific minimum area
- Annual creek/shoreline cleanups 1x/yr at Permittee specific # sites
- Receiving water monitoring program

- Baseline trash generation maps
- Extent of trash full capture systems
- Outcomes of other trash controls
 - On-land visual trash assessments
 - Performance standards for specific controls
- "True" source controls (max 10%)
- Offsets
 - Creek and shoreline cleanups (max 10%)
 - Direct discharge program (max 15%)

- Application of modeled rates
- Verification via On-land Visual Trash
 Assessment (OVTA) method
- Illustrates trash generation
 - Average levels of trash flowing annually into ms4s per unit of land area
- Forms starting point for compliance purposes

- Delineation of areas "treated" by these devices/systems
 - Inlet-based devices combination of desktop and field surveys
 - Large devices engineering designs & plans
- Trash generation of areas treated is calculated as the trash load reduced

OUTCOMES OF OTHER TRASH CONTROLS ON-LAND VISUAL TRASH ASSESSMENTS (OVTAS)

- Rapid visual assessment (qualitative)
 - Magnitude of trash on public rightof-way
- 4 categories
 - A (low) to D (very high)
- Randomly selected sites
 - 10% of streets and sidewalks in areas <u>NOT</u> treated by full capture

OUTCOMES OF OTHER TRASH CONTROLS PERFORMANCE STANDARDS FOR SPECIFIC CONTROLS

- Option that <u>has not yet been exercised in</u>
 <u>Bay Area</u>
- Based on control measure specific performance studies
 - Street sweeping
 - Curb-inlet screens
 - On-land cleanups
 - Business improvement districts
- Application of studies results to areas where implementation is occurring

"TRUE" SOURCE CONTROLS

- Reduction in the generation of trash/litter before it begins
 - Single use plastic grocery bag bans
 - Expanded polystyrene food service ware bans
 - Other controls
- Substantive and credible evidence
- 10% maximum reduction for all true source controls combined

OPTIONAL OFFSETS

- Creek and shoreline cleanups (max 10%)
 - Above and beyond those required by the MRP
 - 3:1 or 10:1 offset
- Direct discharge program (max 15%)
 - Control of direct discharges of trash to receiving waters from non-ms4 sources
 - Comprehensive plan approved by the executive officer
 - Sources of the directly discharged trash
 - Control actions that will be implemented in a systematic and comprehensive manner
 - Map of the affected receiving water area and associated watershed
 - How effectiveness of controls will be assessed

SF BAY AREA PHASE I MS4S

Trash Reduction Options

- 1. Full Capture Systems
- 2. Other Actions (via OVTA Results)
- 3. True Source Controls (10% Max)
- 4. RW Clean up Offset (10% Max)
- 5. Direct Discharge Offset (15% Max)

Baseline Trash Load Trash
Reduction
(% Progress)

AVERAGE LOAD REDUCTIONS BY CATEGORY

TOP 6 LESSONS LEARNED

BASED ON...

- Review of worldwide literature
 - Trash generation
 - Control measure effectiveness
 - Monitoring/assessment methods
- Characterization of 1,000's of gallons of trash
- Regional development of trash generation rates
- Performance standard studies
 - Single use bags and expanded polystyrene bans
 - Street sweeping
 - Curb inlet screens
- Siting, installation and operation/maintenance of thousands of full capture devices
- Over 4,000 on-land visual trash assessments
- Calculating trash load reductions for >50 cities/counties
- Receiving water monitoring program

#6

Proprietary full capture systems benefit water quality, but they cannot be installed everywhere and they require a fastidious maintenance program

TRASH FULL CAPTURE SYSTEMS

- Large systems HDS, GSRDs, Netting
 - Siting can be challenging
 - Low lying areas lack of gradient/velocities
 - Utility conflicts (above and below ground)
 - Small catchments higher costs per unit of trash reduction
 - Maintenance dedicated staffing, special equipment & sops
- Small systems inlet based devices
 - Oversight of vendors
 - Constrained by the size of catch basin
 - Public inlets limited treatment of private lands
 - Maintenance
 - Site specific cleaning schedules (leaf litter)
 - Dedicated staff dispersed system of devices
 - Tracking maintenance and addressing issues

#5

CURB-INLET SCREENS CAN BE EFFECTIVE TRASH CONTROL MEASURES

CURB-INLET SCREENS

TRACKING CALIFORNIA'S TRASH (BASMAA 2017)

LOS ANGELES REGION

• ~85% Effective

BAY AREA REGION

- TCT Study Indicates Reduction of ONE Trash Generation Category
- Further Performance Standard Studies Underwa

#4

"TRUE" SOURCE CONTROLS PROVIDE DEMONSTRABLE WATER QUALITY BENEFITS

"TRUE" SOURCE CONTROLS

- Reductions of litter-prone items in storm drains
 - Single use plastic grocery bags
 - Expanded polystyrene food service ware
- Additional bans/prohibitions could reduce the generation of trash
 - Cigarette butts
 - Plastic disposable bottles
 - Plastic utensils and straws

Single Use Plastic	# SD Inlets	Average # Bags per yr in Each SD Inlet		Reduction
Grocery Bags		Pre Ordinance	Post Ordinance	
	53	1.98	0.56	72 %

EPS Food Service Ware	# SD Inlets	Average Gallons per yr in Each SD Inlet		Reduction
		Pre Ordinance	Post Ordinance	Readenon
	53	0.46	0.12	74%

STORM DRAIN TRASH CHARACTERIZATION STUDY (SCVURPPP 2016)

#3

CLEANING UP TRASH IN RECEIVING WATERS PROVIDES VALUABLE AND DIRECT WATER QUALITY BENEFITS

WATER QUALITY BENEFITS OF TRASH CLEANUP EVENTS

- Millions of gallons of trash removed from receiving waters every year
 - Volunteer efforts
 - City/county staff
- Direct water quality benefit
- Engagement of community members
- Provides assistance in achieving trash reduction goals
 - Road to 100% Last 10-20% reduction may not be attainable without allowing "credit" for cleanup events

#2

BIORETENTION FACILITIES

(AND OTHER TYPES OF TRADITIONAL STORMWATER TREATMENT)

ARE EQUIVALENT TO FULL TRASH CAPTURE DEVICES

(IN MOST AREAS)

TRASH FULL CAPTURE SYSTEM DEFINITION

(SWRCB TRASH AMENDMENTS)

A stormwater treatment control, or series of treatment controls that <u>traps all particles that are 5 mm</u> or <u>greater</u>, and has a design treatment capacity that is either: a) not less than the peak flow rate resulting from a <u>one-year</u>, <u>one-hour</u>, <u>storm</u> in the subdrainage area, or b) appropriately sized to, and designed to carry at least the same flows as, the corresponding storm drain.

<u>Previous Certification of Devices by State and Regional Boards:</u>

- Assumes screening/trapping of 5mm or greater only occurs for flows resulting one-year, one-hour storm
- Trash transported by <u>larger storm events bypass and/or overflow</u> the certified systems

MULTI-BENEFIT TREATMENT SYSTEMS

(CURRENTLY ON THE SWRCB'S WEBSITE AS CERTIFIED)

- BIORETENTION
- CAPTURE AND USE SYSTEMS
- DETENTION BASIN
- INFILTRATION TRENCH OR BASIN
- MEDIA FILTER

Capture and Use Systems

BIORETENTION EQUIVALENT TO TRASH FULL CAPTURE SYSTEM

- Compared 1-year 1-hour storm to standard bioretention sizing criteria
 - 4% surface area criteria
 - 6-inch ponding depth
- Standard biorention facility is capable of capturing flow for areas with 1-year 1-hour storm depth of
 0.59 inches or less

From: Hydraulic Analysis of Bioretention as a Full Capture System for Trash (Dubin Environmental 2016)

BIORETENTION EQUIVALENT TO FULL TRASH CAPTURE

Bioretention Facility Captures Trash in One-Year, One-Hour Storm

(Overflow/Bypass of Larger Storms (No Screening)

Full Capture System Captures Trash in One-Year, One-Hour Storm

(Overflow/Bypass of Larger Storms (No Screening)

#1

LOW TRASH GENERATION (OVTA "A" SCORE) IS EQUIVALENT TO FULL CAPTURE

Full Capture Equivalency Approach

using On-land Visual Trash Assessments

Approach

- Inverse of definition in Trash Amendments
 - The amount of trash that overflows/bypasses a certified full capture system under an acceptable maintenance regime
- Compare that amount, to amount that <u>enters</u> a storm drain inlet from the surrounding land area

using On-land Visual Trash Assessments

Amount of Trash that Enters a Storm Drain Inlet

Amount of Trash that overflows or bypasses a full capture system

Amount of Trash that Enters Inlet* (gal/acre yr⁻¹) vs. OVTA Scores

	Α	В	С	D
Maximum	8.3	24.4	94.7	252.8
90th %	5.0	14.0	48.1	145.4
75th %	2.9	9.7	38.6	129.0
Median	1.4	6.5	23.0	88.0
Mean	2.2	7.6	26.9	100.3
25th %	0.8	4.2	15.3	69.8
10th%	0.4	2.8	11.2	42.2
Minimum	0.2	2.0	6.3	27.1
n	38	54	46	16

^{*} Assumed volume of trash discharged via all storms (i.e., not just the 1 yr, 1 hr Full Capture Design Storm)

Trash Levels

Trash Level	Map Display	OVTA Score	Mean Trash Volume Entering Inlet (gal / acre / year)
Low	Green	A	2.2
Medium	Yellow	В	7.5
High	Red	С	30
Very High	Purple	D	100

Amount of Trash that Bypasses/Overflows Full Capture Systems

(For all storms Under an acceptable maintenance regime)

Trash Entering Inlet (gal /acre yr-1)	Full Capture Efficiency	Trash Captured gal /acre yr ⁻¹	Trash Overflowing/ Bypassing gal /acre yr-1
Moderate (7.5)	70%	5.25	2.25
Moderate (7.5)	50%	3.75	3.75
High (30)	70%	21	9
High (30)	50%	15	15
Very High (100)	70%	70	30
Very High (100)	50%	50	50

using On-land Visual Trash Assessments

Average amount of trash that enters a SD inlet from an area with an "A" OVTA

Amount of trash that overflows/bypasses a full capture system that removes 70% of the trash transported by all storm events

FULL CAPTURE EQUIVALENCY USING OVTA APPROACH

THE CONSISTENT ACHIEVEMENT OF

LOW TRASH GENERATION

AS DEMONSTRATED BY "A" OVTA SCORES

FINAL RECOMMENDATIONS

- USE YOUR TIME WISELY
 - WHERE'S THE TRASH? BASELINE MAPS
 - WHAT'S FEASIBLE & COST-EFFECTIVE (LIFE-CYCLE COSTS)
- ACTIVELY PARTICIPATE IN IMPLEMENTATION
 - OVERSIGHT OF FULL CAPTURE VENDORS
 - LEARN FROM OVTAS WHAT'S WORKING, WHAT'S NOT?
 - ENGAGE THE COMMUNITY AND REGULATORS
- DEVELOP EFFECTIVE TRACKING AND REPORTING SYSTEMS
- ADAPTIVELY MANAGE

SF BAY AREA RESOURCES/TOOLS AVAILABLE

- TRASH GENERATION STUDY
- PHASE I MS4 LONG-TERM TRASH REDUCTION PLANS & ASSESSMENT STRATEGIES
- ON-LAND VISUAL TRASH ASSESSMENT PROTOCOLS (A, B & C)
- GUIDANCE FOR DEMONSTRATING TRASH FULL CAPTURE EQUIVALENCY USING OVTAS (UNDER DEVELOPMENT)
- TRACKING CALIFORNIA'S TRASH REPORTS
- REGION 2 (SF BAY) WATER BOARD TRASH INFORMATION
- STATE WATER BOARD TRASH IMPLEMENTATION INFO

CONTACT INFORMATION

CHRIS SOMMERS
EOA, INC.
1410 JACKSON STREET
OAKLAND, CA 94602
510.832.2852 X109

CSOMMERS@EOAINC.COM

